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Abstract 

The relationship between the intensity distributions 
of the crystal truncation rod (CTR) scattering and 
the surface roughness of a crystal is discussed by 
developing a kinematic theory for the CTR scattering 
so as to reflect the two-dimensional aspect of the 
surface. The intensity of the CTR scattering elongated 
from a Bragg point is shown to be reduced by a factor 
IF(q)[ 2 for a surface possessing some roughness, 
where F(q) is defined by a simple Fourier summation 
of yp, the relative area with the same step height p 

Do 
on a surface, i.e. F(q) = ~p=o 7p exp (27ripq), with 
~p yp = 1, q being the distance in reciprocal space 
from the Bragg point along the CTR scattering. A 
pair-correlation function between the steps can, there- 
fore, be obtained by a simple Fourier integral of the 
roughness damping factor IF(q)12. For the case where 
yp has a Gaussian distribution around the average 
step height, IF(q)[ 2 is approximated by the well 
known Debye-Waller-like factor, exp (--4"tr2(Ap2)q2), 
where (Ap E ) is the mean square deviation of step 
height in units of the lattice spacing. The intensity 
formulae proposed so far by several authors are also 
discussed on the basis of the above factor. 

Introduction 

The effect on the diffraction pattern of the abrupt 
truncation of a crystal at the surface is to give rise to 
rod-shaped scattering elongated from each Bragg 
point in a direction normal to the crystal surface. The 
rod-shaped scattering is referred to as crystal trunca- 
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tion rod (CTR) scattering in X-ray diffraction. The 
intensity distribution along the rod depends very 
much on the condition of the surface, such as the 
surface roughness and the surface lattice relaxation. 
Thus, the analysis of the CTR scattering can provide 
valuable information on the lattice modulation at a 
crystal surface and also on the interface boundary on 
an atomic scale, as demonstrated by several authors. 
Andrews & Cowley (1985) showed that the intensity 
of the CTR scattering is proportional to the inverse 
square of the distance from the Bragg point for the 
ideally flat surface but falls off from it by a Debye- 
Waller-like factor for a surface with some roughness. 
On the other hand, Robinson (1986) showed that 
surface morphology of an Si(111) surface can be 
discussed on an atomic scale on the basis of the 
CTR scattering. Afanas'ev, Aleksandrov, Fanchenko, 
Chaplanov & Yakimov (1986) and Kashihara, 
Kawamura, Kashiwagura & Harada (1987) pointed 
out that it is also possible to evaluate the surface 
lattice relaxation if, in addition, the asymmetry of the 
CTR scattering with respect to the Bragg point is 
taken into account. 

In representing the intensity modulation along the 
CTR scattering due to surface roughness, other theo- 
retical approaches have also been proposed by Vlieg, 
van der Veen, Gurman, Norris & Macdonald (1989) 
and Kashihara (1990). However, the extent of the 
validity for the formulae presented and also their 
relationships have not so far been clarified. It is, 
therefore, important to assess the validity of these 
formulae in order to evaluate the roughness of various 
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crystal surfaces from the analysis of the X-ray CTR 
scattering and this is one of the aims of the present 
study. Here, in paper I of the study, we discuss firstly 
the effect of surface roughness on the intensity along 
the CTR scattering on the basis of a kinematical 
theory of diffraction. In paper II we present an 
efficient new technique, using imaging plates, to esti- 
mate the surface roughness of any crystal from the 
analysis of the X-ray CTR scattering on the basis of 
the formula presented in this paper. 

Formulation of CTR scattering 

For simplicity we will consider a semi-infinite crystal 
of orthogonal lattice with lattice parameters a, b and 
c along the orthogonal x, y and z axes, respectively. 
Only one atom is assumed to be in the unit cell. 
Fig. l (a)  shows a section of such a lattice with the 
extended surface, in which some irregularity exists 
due to steps and holes on the surface. In general, a 
lattice relaxation may also exist, accompanying the 
abrupt change in atomic density at the surface. 
However, at the beginning we consider the case where 
no lattice relaxation occurs on the surface. The vector 
representing a lattice site is labeled by three integers 
m, n, p: 

rm,p = m a +  nb+pc ,  (1) 

(a) 

(b) 

m 

p : 0 ~  
1 
2 
3 

4 

j "  

P=-O 

'--------~ rl 

I 

- _  

P = 3  

Fig. 1. (a) A part of an orthogonal lattice, the surface of which 
has several kinds of steps, where a, b and c are the lattice 
parameters and p,,, is the step height at the (m, n)th lattice 
point. (b) Two-dimensional lattice with phase modulation 
(shaded), reduced from the three-dimensional lattice with steps 
on the surface of (a). 

where m and n take values from -oo to +oo but p 
takes values from -oo to 0. The scattering amplitude 
from this crystal lattice is given by simply summing 
up all the phase factors as 

F(Kx, Ky, Kz) 

=EEZf(K)exp[i(Kxma+Kynb+K~pc)], (2) 
m n p 

where Kx, Ky and Kz are the components of the 
scattering vector K relative to the orthogonal axes x, 
y, z [IKI = 47r(sin 0)/A, 20 being the scattering angle 
and A the wavelength] and f ( K )  is the atomic scatter- 
ing factor. It will be abbreviated as f according to 
circumstances. 

In the derivation of a general formula for the 
intensity distribution of CTR scattering, it is con- 
venient to sum first phase factors along the direction 
normal to the surface and then to take the summation 
over the lateral directions. That is, the summation of 
(2) is made with respect to p first by keeping m and 
n constant. We will refer to such a summation as a 
'column summation'. The scattering amplitude for 
the (m, n) column along the z axis is given by 

- - c o  

~m, = E f ( K )  exp (iKzpc) 
p'~--pm I 

= qb 0 exp (-iKzpm,,C), (3) 

with 

• o=f(K)/[1-exp (iKzc)], (4) 

where Pro, is an integer representing the step height 
from the top lattice point of the (m, n) column to the 
p = 0 level as shown in Fig. l (a) .  The scattering am- 
plitude, qbm,, for the (m, n) column is, therefore, 
expressed as the product of the 'column form factor', 
~o, and the 'column phase factor', exp (-  iKzpm,c ). 

With the use of (/),l, the scattering amplitude from 
all the lattice points can be reduced to a two- 
dimensional lattice sum, 

F(Kx, Ky, Kz) 

=•• ~mnexp[i(Kxma+Kynb)]. (5) 
m n 

The intensity is proportional to the square of the 
scattering amplitude, so that we have 

I(Kx, Ky, Kz) 

= F(Kx, Ky, Kz)F*(Kx, Ky, Kz) 

= E E  Nmn(qgdP*,,)exp[i(Kxma + Kynb)], (6) 
m ?1 

where the symbol (q~q~*.) indicates the average of 
all the pair correlations between the two columns that 
are separated by r,nn(=rm+m,.n+.,--rm,.,) over the 
whole crystal and N,,,n is the number of such possible 
pairs of columns. It should be noted that (6) is in the 
form of the scattering from a two-dimensional lattice 
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if we regard @,,,, as a pseudo form factor located at 
the (m, n) lattice point. It may also be interpreted as 
a two-dimensional lattice with the phase modulation 
related to the step height as shown in Fig. 1 (b). Thus, 
it is possible to treat (6) as the scattering from a 
two-dimensional lattice. 

Now, following Cowley (1981), we can introduce 
the average column form factor, (q~m.), defined as 

~, .  =(q~ ) + a ~ , . . , .  (7) 

where At',,,,, is the deviation from the average column 
form factor (~ , , , )  at the (m, n) lattice point. If (X) 
indicates the average of X for all the lattice points, 
we have (~ , , , )  = (~) .  With use of (7), the pair correla- 
tion (q~cb*,,) in (6) is given by 

< ~ * . )  = ( ~)~ + (a ~a  ~*.). (8) 

By substituting (8) into (6), we have 

I(K~,Ky, Kz) 

=(~'Y E E N,.. exp[i(K~ma+ Kynb)] 
m t l  

+ Z I  Nm.(a~a~*...) 
m ?1 

x exp [i(K,,ma + Kynb)]. (9) 

The first term on the right-hand side is the Bragg 
scattering from a crystal with the average surface. 
The second term is the diffuse scattering, which arises 
from the existence of the irregularity or roughness of 
the surface. If the surface is ideally fiat, this term 
disappears. 

The first exponential factor of (12) will be unity since 
p,,,,, and l are both integers. Thus, the average of the 
phase factor is given as 

(exp ( - 2  rrip,.,,q)) - F( q ). (13) 

F(q) represents the damping factor for the column 
form factor ~o, along the direction K~ normal to the 
surface, due to surface roughness. Thus, the intensity 
distribution of the Bragg term is given by 

/CTR(Kx, Ky, Kz) 

= ~2F(q)2[sin(KxMa/2)/sin(Kxa/2)]2 

x[s in  (KyNb/2)/sin (Kyb/2)] 2, (14) 

where M and N are the total effective number of 
lattice points in the x and y directions, respectively. 

For the case of the perfect fiat surface, the surface 
has no irregularity. Thus all the values of p,,~ should 
be zero, so that we have F(q) = 1. Therefore the Bragg 
scattering has a long tail along the Kz direction, since 
it varies as If(K)~[1 - e x p  (iK~c)]l 2, but is very sharp 
for the direction perpendicular to it because of the 
Laue functions along the Kx and Ky directions. The 
intensity distribution in reciprocal space shows, there- 
fore, a similar aspect to the scattering from a two- 
dimensional lattice and /o r  that from a disc-shaped 
crystal, except for the intensity modulation along the 
Kz direction, as shown schematically in Fig. 2. The 
h, k, l + q point is not equivalent to the l + q, k, h point 
in the reciprocal space, even for cubic crystals. This 
arises from the requirement that only two- 
dimensional symmetry around the axis perpendicular 

CTR scattering 

In this section, we discuss the factor (~ )  in the Bragg 
term of (9) especially the effect of the irregularity of 
the surface on the Bragg term. From (3), for @,,,n we 
have 

(crP)=(~m,)= CI)o(exp (-iKzp,,,c)). (10) 

Thus we see that evaluation of the average column 
form factor is equivalent to taking the average of the 
column phase factor. Since p,,, indicates the step- 
height deviation from the top surface at column 
(m, n), we also see that information about surface 
roughness is included in this average. The scattering 
vector Kz is written in the form 

Kz = Ic* + qc*, (11 ) 

where l is the Miller index, representing the 
reciprocal-lattice point along the K~ direction, q the 
deviation from it and c* the reciprocal-lattice unit 
with the relation (cc* = 2zr). The column phase factor 
is rewritten as 

exp ( - iK~pm,,C) 

=exp (-2'rrip,,,,l) exp (-27ripm,,q). (12) 

SURFACE 
NORMAL 

[oo~] 

: f 

/ 
[ioo~ 

; 2 

LAUE 

" 1 1 [ 0 1 0  ` 

22O 

Fig. 2. Intensity distribution in the reciprocal space for a crystal 
with an extended surface, showing the two-dimensional aspect. 
The h, k, l + q point is not equivalent to the h + q, k, ! point, 
even for the lattice with cubic symmetry. 
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to the surface can hold for a crystal with an extended 
surface, since the surface has to be kept unchanged 
for such a symmetry operation, as discussed by 
Kashihara, Kawamura & Harada (1991). It should 
be noted that this effect is only observed in the scatter- 
ing from the surface and not in the Bragg scattering. 
The long tail of Bragg scattering along the K~ direc- 
tion is in fact the crystal truncation rod (CTR) scatter- 
ing, although it looks more like a 'needle' than a 'rod'. 
The effect of the roughness of the surface is seen 
along the Kz direction in that q~ is reduced by the 
factor F(q) 2, as will be discussed later. 

If we can assume that there is no correlation 
between any pair of columns, i.e. the surface is ran- 
dom, the second term of (9), representing the diffuse 
scattering is reduced to the simple form 

IDIFF(Kx, Ky, K~)= Nf(K)2[1-1F(q)I2]. (15) 

The diffuse scattering increases monotonously with 
increasing q along the direction perpendicular to the 
surface, since [F(q)l = 1 at q - -0  and it approaches 
the limiting value at qmax- On the other hand, it 
decreases along the direction parallel to the surface 
because of the factor f 2. As seen from (15), there is 
a close resemblance between this scattering and the 
thermal diffuse scattering for a two-dimensional 
lattice in the Einstein approximation. 

Lattice relaxation 

We have so far ignored the effect of lattice relaxation 
at the surface on the CTR scattering. This effect is 
considerable, giving rise to asymmetry in the CTR 
intensity as pointed out by Afanas'ev et al. (1986) 
and Kashihara et al. (1987). If the lattice relaxation 
is assumed to decay with depth p from the surface 
according to the relation Up = Uo exp (-p/~:'), where 
Up is the displacement of the lattice spacing at the 
pth level and ~:' the characteristic depth of the relaxed 
surface, we may include the effect of lattice relaxation 
by replacing q~o of (14) with 

qb~= ~o{1 + i(KzUo)[1 - e x p  (iKzc)] 

x [1 - e x p  ( iKzc-  1/~ ' )]- '  

- ( K~ Uo)2[ 1 - exp (iKzc) ] 

x [ 1 - e x p  ( iKzc-  2/~,)]-1} (16) 

within the approximation exp ( iKU) ~- 1 + iKU. 
In this treatment the surface lattice relaxation is 

assumed to be normal to the surface and independent 
of the lateral direction. It means that no correlation 
is assumed to exist among the columns with respect 
to the lattice relaxation. The effect, therefore, should 
arise only in the Bragg term and not in the diffuse 
scattering term in (9). 

If ~o in (14) is replaced by q~6 from (16), we have 

• 62 =f2/ [2(1  - cos Kzc)]+ K~U 

x 2(sin Kzc)[1-exp ( - 1 / ~ ' ) ] f  2 

x { (1-cos  Kzc) 

x [ 1 + exp ( -  1 / ¢') + exp ( -2 /¢ ' )  ] 

- (cos Kzc - cos 2Kzc)} -1 

+term in (KzU) 2. (17) 

The first term represents the CTR scattering from an 
ideally flat surface of the crystal. The second and 
third terms are proportional to the products (KU)  
and (K U) 2, respectively. This is a familiar modulation 
effect often seen in the X-ray scattering from alloys 
consisting of atoms with different atomic sizes, when 
local atomic order exists. They correspond to the 
size-effect modulation and the well known Huang 
scattering, respectively, in the short-range-order 
diffuse scattering from alloys. The second term modu- 
lates the intensity of the CTR scattering so as to be 
asymmetric with respect to the Bragg point, because 
of the odd function sin Kzc. The third term is negli- 
gible compared with the second term and may be 
ignored. 

The effect of the second term can be quite sig- 
nificant in the case of the CTR scattering. Thus it is 
easy to demonstrate its effect by the use of a simple 
model. If, for instance, only the top surface layer of 
a lattice is subjected to the lattice relaxation, the case 
discussed by Harada, Takata, Miyatake and Koyama 
(1989) with the use of the optical Fourier transform 
and also by Vlieg et aI. (1989), (17) reduces to the 
simple form 

~'o:=~2[l+2(KzUo)sinKzc] (18) 

as exp (-1/~: ') tends to zero. On the basis of this 
relation we easily see that the 1% expansion of the 
spacing Uo increases the second term by more than 
15% relative to the first term at around q = 0.2. This 
is a considerable modulation of the CTR scattering. 
We also see the sense of lattice relaxation, namely 
whether lattice expansion or shrinkage occurs, from 
the intensity asymmetry of the CTR scattering. 

Surface roughness 

(i) Roughness damping factor 

We introduce 39 as the probability of finding 
columns with a step height p on a crystal surface. 

E Yp = 1. (19) 
p~O 

The summations are over all the steps. We see that 
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F(q) of (13) is simply given by Fourier summation 
of this 3,p, 

-, co 

F(q) = Y~ 3,p exp {-2zripq}. (20) 
p = 0  

Thus, the damping factor [F(q)[ 2 to the CTR scatter- 
ing is evaluated by (20) if 3,p is given. [F(q)[ 2 will be 
referred to as the roughness damping factor, RDF, 
hereafter. 

A simple example is the case where only a single 
kind of step exists on a flat surface as shown in Fig. 3, 
which is often referred to as a two-level model. F(q) 
is expressed by two Fourier components with one 
parameter 3'0, since 3'1 is equal to (1 - 70) from (19). 
It should be noted that Yo represents the coverage of 
the top layer on the surface whatever lateral correla- 
tion exists between the columns or steps. We have 

r(q) ~= 1-23,o(1 - 3,o)(1 - c o s  2¢rq). (21) 

This result shows that the RDF [F(q)l 2 is a function 
falling off from 1 at q = 0  to 1-43,o(1-3,o) at q=½ 
for the Brillouin-zone boundary and also an upward 
parabolic function with respect to the coverage 3,0. 
If the coverage 3,0 increases with constant speed as 
seen in the surface grown layer by layer, IF(q)l 2 is 
expressed in a quadratic form with respect to the 
time, as shown in Fig. 4. This is a well known relation 
for the LEED and RHEED oscillations (Neave, 
Joyce, Dobson & Norton, 1983; Lent & Cohen, 1984) 
although the oscillation is subject to the effect of 
dynamical diffraction in the case of electron scatter- 
ing, but it may hold for X-ray CTR scattering. Vlieg, 
van der Gon, van der Veen, Macdonald & Norris 
(1988), however, found that the experimentally ob- 
served curve deviates from this simple relation, 
indicating that the two-level model is not sufficient 
for a crystal growth of Ge on an Si surface. For (21) 
such a quadratic relation holds not only for q = ½ at 
the Brillouin-zone boundary but also for any q value. 

For the small q region, such as the points near the 
Bragg point, IF(q)[ 2 is expressed in the form of a 
Debye-Waller-like factor, e x p  {-4"/r213,o(1 - yo) jq2} ,  

so that in principle it is possible to estimate the 
coverage 3'0 even from the analysis of the CTR scatter- 
ing observed near the Bragg point. 

7o 
/ p /  ~~ = 1 - 7 0  

/ /  

I 
Fig. 3. An illustration of a crystal surface for the two-level model. 

It is characterized by one parameter Yo, representing the 
coverage of  the surface. 

In (20) we see that a pair-correlation function 
between the steps can be obtained by a simple Fourier 
integral of the RDF, IF(q)l z, 

qmax 

(3,o7p) = 2 ~ Ir(q)l  2 exp (2~ripq) dq, (22) 
o 

where (3,o7p) is the pair-correlation function defined 
as  

(3,03,p): E Yp'3,p'+p" ( 2 3 )  
p ' > 0  

More direct information about yp can also be 

It(q)[ 2 

1.0 

0.8 

i 

I 

' '  ,,">,, - o :' 
' , \  ~'" ~ ' - - ~ ' ] - -  , 
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1/1o ~/,~ 

"~.... 
" ~ . . . . . . _  
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(b) 

Fig. 4. The RDF, versus (a)  q and (b) Yo, for the two-level model. 
The d6tted curve shows a Gaussian approximation for 3'0--0.5. 
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obtained if F(q) is known from experiment, 

qmax 

yp = 2 I r (q )  exp (27ripq) dq. (24) 
0 

This result expresses the probability of finding 
columns with step height p in terms of the Fourier 
integral of F(q) as a function of q. Although one may 
expect to encounter some experimental difficulties in 
obtaining F(q) and IF(q)l 2 for the real crystals from 
the analysis of the CTR scattering, this is a very 
interesting subject to explore by experiment. 

(ii) Debye- WalIer-like factor 

If an average step height (p) is introduced, the step 
height Pmn at column (m, n) is given by the sum of 
(p) and the deviation Ap,,,, from it, 

p,. =(p)+ap,,.. (25) 

The average (p) should be taken over the whole 
two-dimensional pseudolattice. Thus, as illustrated 
in Fig. 5, (p) and its deviation ap,,, are no longer 
integers and, furthermore, ap,, ,  can be positive or 
negative depending on the lattice point (m, n). If we 
substitute (25) into (13) and take its average, we have 

F(q)  = (exp (-2¢riAp,,,,q)), (26) 

where a simple phase factor exp (-2~ri(p)q) is omit- 
ted, as it does not come into the intensity expression. 
Only the second term of (25) is significant. In the 
small-q region, it is possible to use the well known 
relation for taking the average, 

(exp ( -  ia)} = exp ( -  ½(c~2)), (27) 

which is exact when a is normally distributed about 
a = 0. We have a similar expression to the Debye- 
Waller factor for thermal vibration for F(q), 

F(q)2 = exp {-4¢rZ(Ap2,)q2}, (28) 

where (ap2, )  is written as (Ap2). It should be noted 
that this exponential factor works as a damping factor 
for the CTR scattering due to surface roughness. This 
is the same formula as that derived by Andrews & 
Cowley (1985) by assuming the surface roughness is 
given by a Gaussian form. The representation (28) is 
only valid for small q or for the case where the surface 
roughness is well approximated by a Gaussian distri- 
bution. 

Ap>01 

. . . . . .  ~. ~.~-~-.  i Ap < 0 
V / - / F / ,  ~ W/" / q 
~,. " .," , ' , "  / / /  K.,,~ v ,  , " ,  

• . . , - •  , . . •  ..... • . • • • • • • f " •  , - e = ~ - e  • • 
. . ,  , , "  ,., ', , ! / V , . . ' - / ~ - -  

Fig. 5. A schematic illustration of (p) and Ap. 

In practical applications of CTR scattering, 
however, it is a very useful result that the surface 
roughness can be obtained as the mean-square devi- 
ation of step height (Ap 2) on an atomic level from 
the analysis of the CTR scattering for small q (Gibbs, 
Ocko, Zehner & Mochrie, 1988; Harada, Shimura, 
Takata, Yakushiji & Hoshi, 1990). The analysis pro- 
ceeds in an analogous way to the determination of 
the thermal parameter from the Debye-Waller factor 
in ordinary crystal-structure analysis. 

(iii) Model calculation 

We see from (14) that the CTR intensity along the 
rod direction normal to the crystal surface decreases 
as 1/q 2 for small q for an ideally flat surface and 
decreases more rapidly for a rough surface. Thus, the 
reduction of the observed intensity of CTR scattering 
from that calculated for an ideally fiat surface at a 
certain q value enables us to estimate the mean-square 
deviation of step height, (zap2). We may see how 
sensitive the CTR scattering is to the surface rough- 
ness by the model calculations based on (28), which 
are shown in Fig. 6, where the CTR scattering for 
several values of (Ap 2) are compared. We see that the 
effect is especially pronounced for large values of q. 
The CTR scattering intensity for rough surfaces at 
q = 0.2 compared to that for the ideal surface is 72, 
53 and 38% for ( A p  2)  = 0.2, 0.4 and 0.6, respectively. 
These intensity reductions are readily observable with 
sufficient accuracy. 

Once we have obtained the average value (Ap 2) by 
the above method, we still have to answer the ques- 
tion: what lateral extent of the surface does the 
average represent? It does not depend obviously on 
the size of the incident X-ray beam but rather on the 
spatial coherency of the X-rays used in the experi- 
ment, if the crystal is perfect. However, it would be 
limited by the average size of the mosaic blocks of 

:0 -1 
-0.30 -0.20 -0.10 

, (e )  1 / q2 
\\--% 

i re) 
0.00 0.10 0.20 Cl 

Fig. 6. Intensity change of the CTR scattering along the rod for 
several different degrees of surface roughness. (a) Ideal flat 
surface; (b), (c) and (d) rough surfaces with (Ap 2) = 0.2, 0.4 and 
0.6 in Debye-Waller-like factor, respectively; (e) the 1/q 2 rela- 
tion, showing its deviation from the exact calculation (a) for 
the ideally fiat surface. 
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crystals, if the crystal is not perfect. It means that the 
result depends both on the degree of perfection of 
the crystal used and on the optical system used in 
collimating the primary X-ray beam. It is rather 
difficult to estimate the range of the coherence, as the 
width of the CTR scattering is observed to be less 
than the instrumental resolution for the X-ray beam 
collimated by a double-crystal monochromator  of Si 
in the parallel setting for the SR source BL-4C at the 
Photon Factory. However, Kashiwag.ura & Harada 
(1990) have estimated that it would be a few ixm. 
This is in agreement with the value estimated as the 
temporal coherence length by Ishikawa (1990) on the 
basis of the nature of a SR source. Accordingly, we 
may say that the step height averaged over 10 ~m 2 
may be obtained by using the SR source. 

Comparison with other formalisms 

Another representation of the CTR scattering is to 
write the scattering amplitude in the form 

FCTR(K) = Y. Opfexp (iKzpc) 
P 

xY~Y~exp[i(Kxma+Kynb)],  (29) 
m ?1 

where Op is the probability of finding the atoms at 
the pth level from the surface. The meaning of Op is 
different from yp introduced in this paper, yp is 
defined as the probability of finding columns with a 
step height p on the surface. It represents the relative 
area of the terrace with step height p to the whole 
area of the surface, while Op shows the relative 
occupancy at the pth level. This relationship between 
yp and Op is illustrated in Fig. 7. We see from Fig. 7 
that 

~/p = O p - -  O p -  1 • (30 )  

(i) Robinson's model 

In the analysis of the CTR scattering from the (111) 
Si wafer surface, Robinson (1986) introduced a single 
parameter/3 (0 </3 < 1), representing the probability 
of finding atoms in a particular atomic layer. A 
schematic illustration of the surface region is shown 
in Fig. 8(a). Op is given by 

{Cv f ° r P  - 0  
0v= for p < 0 .  (31) 
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F~ . . . . . . .  I~ 02 - 72 
7 - / 7  i 

73 < 03 > k  73 i i i i i i )  77~,';"'77-/" 

Fig. 7. An illustration of the difference between the definitions 
of parameters 3'p and 0p : Yo = 0o; Y~ = 0t - 0o; Y2 = 0z - 01 and 
so on. 

By substituting (31) into (30), IF(q)[ 2 is calculated as 

I / ' ( q ) J 2 = ( 1 - / 3 ) 2 / [ l + / 3 2 - 2 / 3  cos(2zrq)]. (32) 

This is the expression derived by Robinson (1986) 
for the damping factor for the CTR scattering. 

(ii) K K K H  models 

Kashihara, Kawamura, Kashiwagura & Harada 
(1987) (referred to as the KKKH model) derived (29) 
by assuming that the distribution of atoms near the 
surface would have an exponential form, so 

0 p = { ~ _  for p > 0  
r /exp ( p / f )  for p-<0, (33) 

where the two parameters 1 - r t  and ~ represent the 
relative number of atoms at the top level of the surface 
and the characteristic depth of the surface roughness 
region, respectively. A schematic KKKH model is 
shown in Fig. 8(b). If we substitute (33) into (30) 
and calculate F(q) from (14), we have 

IF (q)12= [1 - r / - ( r / -  A) exp (-27riq)] 2 

x [ 1 - A exp (-27riq)] -~ (34) 

where A -- exp ( -  1/so). This corresponds to the damp- 
ing factor for the KKKH expression. This expression 
has been used with success in the analysis of the 
surface morphology of several crystal surfaces 
(Kashihara et al., 1987; Kashihara, Kimura & Harada, 
1989; Kashihara et al., 1991). 

Comparison of the relations (32) and (34) shows 
that the relations become identical when we put r/-- 
exp ( - l / f )  in the KKKH model and also equate it 
to/3 in Robinson's model. Thus, an extreme case of 
the KKKH model is Robinson's model. At first the 
two density distributions along the direction normal 
to the surface are opposite to each other as seen from 
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Fig. 8. A comparison of(a) Robinson's model and (b) the KKKH 
model. Depth p versus density 0. 
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Figs. 6(a) and (b), so that different answers are expec- 
ted. But the same values of IF(q){ are obtained for 
both models, as a consequence of the well known 
Babinet principle. In any models so far discussed the 
damping factor IF(q)] 2 for the CTR scattering can be 
represented in a Gaussian form of Debye-Waller-like 
factor, (26), for the small-q region. 

Concluding remarks 

In this paper, the effect of surface roughness on the 
X-ray CTR scattering has been discussed by develop- 
ing a kinematical diffraction theory for the crystal 
with an extended surface. The theory is based on a 
simple orthogonal lattice, consisting of one atom in 
the unit cell. For real crystals the situation is not 
expected to be quite so simple. It is possible to extend 
the present theory for a lattice consisting of several 
atoms in the unit cell, without losing its generality, 
by simply replacing .the atomic scattering factor f by 
the crystal structure factor F in (2) and (4). This 
replacement corresponds to taking a bunch of atomic 
chains starting from the atoms in the unit cell at the 
upper surface along the inward direction perpen- 
dicular to the surface. The summation will then be 
over the columns. However, the unit step height 
should be taken to be the length of the unit cell, if 
the present theory is adopted as it stands. 

In general the surface of a real crystal is not as 
ideal as discussed here. Many kinds of steps with 
different step heights may exist on the surface that 
are not necessarily a multiple of the unit-cell height. 
Even in such cases, the present theory, in which the 
scattering is treated as that arising from a two- 
dimensional arrangement of column scatterers, could 
be extended by introducing multiple columns with 
different phases. An attempt at treating such cases 
has been recently described by Kashihara et  al. (1991) 
in the study of the interface boundary of the GaAs 
(001) surface with an amorphous oxidized layer. 

In this paper, we confined the discussion to the 
intensity profile along the CTR scattering, not the 
profile perpendicular to it or the diffuse scattering 
term. These subjects will be discussed in future 
papers. 
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